Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

نویسندگان

  • N. Apurv Chaitanya
  • M. V. Jabir
  • J. Banerji
  • G. K. Samanta
چکیده

Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital Angular Momentum Density of a Hollow Vortex Gaussian Beam

Here the hollow vortex Gaussian beam is described by the exact solution of the Maxwell equations. By means of the method of the vectorial angular spectrum, analytical expressions of the electromagnetic fields of a hollow vortex Gaussian beam propagating in free space are derived. By using the electromagnetic fields of a hollow vortex Gaussian beam beyond the paraxial approximation, one can calc...

متن کامل

Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction.

When a left-circularly polarised Gaussian light beam, which has spin angular momentum (SAM) J(sp) = sigmah = 1h per photon, is incident along one of the optic axes of a slab of biaxial crystal it undergoes internal conical diffraction and propagates as a hollow cone of light in the crystal. The emergent beam is a superposition of equal amplitude zero and first order Bessel like beams. The zero ...

متن کامل

Cascade Raman sideband generation and orbital angular momentum relations for paraxial beam modes.

In this work, the nonlinear parametric interaction of optical radiation in various transverse modes in a Raman-active medium is investigated both experimentally and theoretically. Verification of the orbital angular momentum algebra (OAM-algebra) [Strohaber et al.,Opt. Lett.37,3411 (2012)] was performed for high-order Laguerre Gaussian modes ℓ>1. It was found that this same algebra also describ...

متن کامل

Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π -phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close a...

متن کامل

Angular momentum of a strongly focused Gaussian beam

A circularly polarized paraxial Gaussian laser beam carries ±h̄ angular momentum per photon as spin, with zero orbital angular momentum. Focusing the beam with a rotationally symmetric lens cannot change this angular momentum flux, yet the focused beam must have spin |Sz | < h̄ per photon. The remainder of the original spin is converted to orbital angular momentum, manifesting itself as a longitu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016